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Optical Metrology of the Optical Communications
Telescope Laboratory 1-Meter Telescope by
Means of Hartmann Tests Conducted at
the Table Mountain Observatory

A. H. Vaughan'! and D. Mayes?

This article describes the use of a pupil mask and a charge-coupled device (CCD)
camera with stellar sources to characterize the optical performance of a 1-meter
telescope, built for JPL by the firm Brashear LP of Pittsburgh, Pennsylvania, after
the telescope was permanently installed in JPL’s Optical Communications Telescope
Laboratory (OCTL) at the Table Mountain Observatory. A total of twenty-two
I-minute exposures of a 6th magnitude star were recorded over a span of 1 hour
on the night of June 3, 2004, UTC. “Seeing” was estimated at 1 arcsecond or
better. Analyzed by methods described herein, the method yields Zernike wavefront
aberration coefficients having an average standard deviation of about +0.04 wave at
633 nm per individual frame for the low-order aberrations considered (x-tilt, y-tilt,
defocus, X-astigmatism, T-astigmatism, x-coma, and y-coma). The formal standard
deviation of the mean, estimated by dividing by /(N — 1), where N = 22 frames,
thus approaches £0.01 wave. This compares favorably with the accuracy achieved
by interferometry in factory tests of the OCTL telescope. The root-sum-square (rss)
sum of astigmatism and coma is shown to be in the neighborhood of 0.13 wave root-
mean-square (rms). Of this total, about 0.09 wave rms is due to coma that could,
in principle, be corrected by re-centering the secondary by 0.002 inch (50 pum).

l. Introduction

A reliable way to characterize the wavefront produced by an optical system is through the use of the
classical Hartmann test [1,2], in which the paths of light “rays” defined by holes in a mask are deduced
from measurements of their intercepts with planes at known axial distances from the paraxial focus. The
test can make use of time exposures of adequate duration to make it relatively insensitive to random
disturbances caused by atmospheric turbulence and tracking jitter. The method thus readily lends itself
to the testing of large-aperture optics and to optical testing in the presence of vibration and atmospheric
turbulence. In tests of an astronomical or tracking telescope, the light source can be any star of suitable
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brightness. The classical Hartmann method is simpler than the so-called Shack—Hartmann test often
used for wavefront sensing in adaptive optics systems. In Shack—Hartmann, an image of the system pupil
is formed on an array of small lenses (a micro-lens array), serving to form an array of star images on a
detector. The classical form of the Hartmann test uses no optical components other than those under
test, except for the mask, whose pertinent dimensions are readily National Institute of Standards and
Technology (NIST)-traceable.

The classical Hartmann test introduces an accurately known pupil intensity function (the mask with
circular holes) having symmetrical spatial features of known size and locations. Each hole in the mask
defines a bundle of rays that samples a specific sub-aperture of the pupil. Diffraction may or may
not contribute significantly to the out-of-focus image structure in a Hartmann test (depending upon
wavelength and upon the geometrical placement of the detector intercepting the rays). Because diffraction
by a circular aperture is symmetrical, the centroids of light bundles passing through them can be assumed
to define ray paths that can be accurately described in terms of geometrical optics. The precise path of
a given bundle of rays depends sensitively upon the surface slope errors on the optical elements that may
exist at the particular sub-aperture sampled. The position at which the centroid of a given ray intercepts
a known plane (the surface of a charge-coupled device (CCD) used as the detector), compared to the
intercept of a ray centered on the same sub-aperture point as predicted for a perfect optical system by
ray tracing, serves to measure the net optical surface slope error encountered by the ray in question.
The statistical analysis of the ensemble of slope errors serves to characterize the optical quality of the
system and the influences of atmospheric turbulence. Alternatively, as will be described, the ensemble
of time-averaged slope errors can be fitted by a least-squares procedure to spatial derivatives of Zernike
wavefront functions representing wavefront aberrations of the system.

Il. Basic Approach

Although the 1-meter-diameter primary mirror serves as the entrance stop of the Optical Communi-
cations Telescope Laboratory (OCTL) telescope, a Hartmann mask is more conveniently located external
to the telescope, slightly in front (skyward) of the secondary mirror. For tests limited to on-axis field
points, this is practically equivalent to placement of the mask at the primary mirror, but it avoids the
potential complication of light traversing the mask in two directions (before and after reflection in the
primary); and the mounting of the mask is more easily managed. Our mask was fabricated by means of
precision water-jet machining of 1/4-inch (~0.6 cm) paper-sandwiched Styrofoam (“art board”), chosen
both for its dimensional stability and its light weight, avoiding the need to re-balance the telescope in
accommodating the mask. The mask contains a rectangular pattern of 20 evenly spaced holes (not count-
ing a center hole), the holes representing essentially equal area fractions of the pupil. Subsequent to the
observations described in this article, the mask hole pattern was subjected to validation at the JPL Mea-
surement Assurance Center using a Brown & Sharpe Coordinate Measuring Machine. Mask dimensional
errors (computed from measurements at eight points around the perimeter of each hole) were found to
be small in comparison to the telescopic aberrations of interest (see Discussion, Section VII).

For the observations reported here, the mask was approximately centered on the aperture as judged
by eye to avoid vignetting (exact centering is not required for a mask located in the collimated light of
object space of a well corrected telescope). The mask was clocked in such a way as to avoid obscuring
any of its holes by secondary mirror support vanes.

To allow the out-of-focus images to fill a convenient format on our detector (an Apogee® 1056 x 1024
CCD array of 14 pm pixels), the detector was located (in two successive series of tests) at two different
positions A, determined to be 36.65 inches (93.09 cm) and 25.40 inches (64.52 cm) beyond the paraxial
coudé F /75 focus of the telescope. The hole diameter d was chosen to minimize the size of the blur circle
caused by the combination of defocus and diffraction. This occurs when the two contributions are made
approximately equal, so that
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where f = 75,000 mm is the nominal F/75 coudé focal length, and A = 632 nm is taken to be the effective
wavelength. The blur circle size at the detector (the root-sum-square (rss) of defocus and diffraction blur
in equal amounts) is then approximately

2.44-v/2- X% ~1.7-mm ~ 113 - pixels

Ul

The spacing between the holes (and hence the number of holes in the Hartmann screen) was chosen to
separate the blur circles in the plane of the detector by approximately the blur circle diameter, avoiding
cross talk between adjacent spots that might influence the determination of spot centroids. The resulting
mask layout is shown to scale in Fig. 1.
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Fig. 1. The Hartmann mask layout, with dimensions shown in inches. Holes lie
on 7.75-inch (19.68-cm) centers to an estimated precision of about 0.005 inch
(13 um). Hole diameters are 3-13/16 inches (9.68 cm). The outside diameter of

the mask is 42 inches (107 cm). Optimal hole size was calculated to minimize
spot blur sizes at the location of our detector, which was about 36 inches (91.44
cm) beyond the paraxial coudé focus of the telescope. The mask was fabricated
by water jet machining of 1/4-inch- (0.635 cm)-thick art board.



Experience has shown that a good centroiding algorithm can estimate the position of the centroid of an
approximately Gaussian star image to an accuracy of about 1 percent of its diameter, in this case about
17 pm, or 1.1 pixels. Considering the lever arm of 75 meters + A, the corresponding rms accuracy for
estimation of wavefront slope error is (17 um)/(75.9) = 2.2 x 1077 radians. Extended across an aperture
radius of 50 cm, this slope measuring error would give a peak-to-valley wavefront error of about 0.18 wave
at 633 nm. One might naively expect that, for N = 20 spots, the overall peak—valley measuring error
would be reduced by a factor 1/4/(N — 1), to be of order 0.04 wave. If, as in the present case, a total of
22 such independent measurements (frames) are combined by averaging, the resulting standard deviation
of the mean might be expected to approach 0.01 wave, assuming the errors involved are entirely random.
These crude estimates are in fact not far from the reproducibility of measurement actually achieved, as
will be described.

lll. The Observations

In preparation for the tests reported here, steps were taken to ensure the stablest possible operating
conditions in the OCTL dome. Thus, the dome was opened at evening twilight and remained open
under ambient conditions for about 2 hours prior to the beginning of our tests. Before attaching the
Hartmann mask to the telescope, we confirmed the approximate position of the optical axis by pointing
the telescope at a bright star and visually bore sighting from the coudé focus to verify centration of the
beam within the clear apertures of the secondary mirror and intervening five plane fold mirrors along
the coudé light path. We concluded that our estimated location of the optical axis was accurate to
within approximately 15 arcseconds (5.5 mm), as compared to the telescope’s design half-field of view of
126 arcseconds (46 mm). Using the CCD camera, we confirmed the approximate axial location of the
plane of best focus from which to measure focus offsets A. Finally, by trial, we established that at the
focus offsets of interest, exposures of 1-minute duration using a 6th magnitude star (FK5 #1339) would
give a useful exposure level with adequate time averaging of the effects of atmospheric turbulence.

A total of 22 frames were recorded over a 1-hour time span (05:30 to 06:25 UTC), during which the
star’s elevation decreased from 67.8 to 57.3 degrees above the horizon. Two independent series of test
exposures were made, hereinafter called Series 1 (frames 39 through 50 at the shorter defocus distance)
and Series 2 (frames 54 through 64 at the longer defocus distance). Typical exposures (frames 39 and
54) belonging to Series 1 and Series 2, respectively, are shown in Fig. 2.

IV. Estimation of Centroids

The critical data needed in Hartmann testing consist of suitably accurate measurements of the CCD
pixel coordinates of the centroids of the recorded blur circles or spots. Our analysis using computer-
simulated data suggested that a positional accuracy of about 1 pixel rms (or one percent of the blur
diameter of a spot) would be necessary as well as sufficient to achieve a precision of 0.01 to 0.02 rms
wave at 633 nm in the determination of low-order Zernike wavefront aberrations for the OCTL telescope.
Various centroiding methods were considered [4], all making use of initial approximate estimates of images
recorded in the Flexible Image Transport System (FITS) format. Approximations made by eye, from
inspection of images as displayed on a monitor, were estimated to have a precision of two or three pixels.
Because the “eye” is very good at judging centroids while disregarding artifacts such as dust particle
shadows, such approximations were retained as “sanity checks” on more refined methods. We adopted a
quadrant-sensor algorithm that we deemed sufficiently accurate while requiring only about 30 seconds of
computation for each set of 20 spot images in a CCD frame. To each spot image, a cutoff was imposed
at a radial distance (from the eye-estimated centroid) large enough to include most of the light in a
Hartmann spot image, but small enough to exclude light from the wings of adjacent spots. To further
improve the accuracy of the method, we replaced all “hot pixel” intensity readings by the average of the
four neighboring pixels in each row and column. We believe our centroid determinations closely approach
the 1-pixel accuracy level, so that measuring errors are not an important factor in the interpretation of
our results.



Fig. 2. Negatives of Hartmann test frames (a) 39 from Series 1 and (b) 54 from Series 2, made with an Apogee CCD
camera spaced about 93.09 cm and 64.52 cm, respectively, from the paraxial focus. Frame sizes are 1056 x 1024

pixels. Measured centroid coordinates of the 20 blurred spots in each frame are used to derive geometrical image pat-
terns and Zernike wavefront aberration coefficients, as described in the text.

V. Interpretation of Centroid Data

The simplest method of interpreting the centroid data from a Hartmann test is to project each ray
bundle (represented by a ray extending from the center of the corresponding hole in the screen) to its
intercept in the plane of best focus so as to create a spot diagram. T'wo pre-processing steps are executed
at this stage. First, the origin of the (x,y)-centroid coordinates is shifted to the center of the spot pattern.
Second, a coordinate rotation about the origin in the (x,y)-plane is performed to align the spot pattern
with the hole pattern in the mask, so as to minimize the rms spread of points in the resulting spot diagram.
In the case of the OCTL, a slightly different, monotonically changing degree of rotation is required for
each successive frame because of field rotation in the coudé system. In this way, we develop for each frame
a geometrical spot diagram consisting of 20 ray intercepts, representing the geometrical performance of
the telescope with atmospheric turbulence largely averaged out over the 1-minute duration of an exposure.
A typical spot diagram obtained in this way is shown in Fig. 3. The resulting rms geometrical spot radii
from analysis of all 22 frames are listed in the second column (“Spot”) of Table 1 (for Series 1) and Table 2
(for Series 2). The rms spot radii average 0.36 and 0.37 arcsecond, respectively. The standard deviations
among frames was 0.07 to 0.08 arcsecond. These results are model-independent, assuming only the laws
of geometric optics.

To derive the wavefront errors, we make explicit use of the fact that the Hartmann test measures slope
errors. The slope errors are determined from the difference between the observed detector coordinates
(€obss Mobs ) Of the centroid of a blur circle and the position (€cqic, Neaie) predicted by scaling the Hartmann
screen pattern to the size it would occupy in the plane of the detector for the appropriate value of A (use
of the scaled pattern is equivalent to ray tracing a perfect optical system). The wavefront slope errors
WX, and VY; in the x- and y-directions, respectively, at the location of the ith hole are given in radians
by

X, =
f+A
MNi,obs — MNi,calc
py; = Hobs = Micale
% f‘|‘A
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Fig. 3. Geometrical spot diagram derived from a single Hartmann test frame
by tracing rays from the Hartmann mask to their intercept at the detector, and
extending the rays to the plane of best focus (minimum rms scatter). The
Hartmann pattern is centered and de-rotated in pre-processing, as described
in the text. Seeing effects are largely (although not entirely) averaged out in
the 1-minute exposures used in this investigation.

The x- and y-components of wavefront slope errors are given by first derivatives of the Zernike polynomials.
The first eight of these are given for reference in Table 3, where we make use of the Zernike Standard
Polynomials defined in ZEMAX [3]. Since the Zernike polynomials are defined only within a circle of
unit radius, the pupil coordinates x and y in these expressions are assumed to be normalized to the unit
circle.

In the present application, we have omitted spherical aberration for two reasons: (1) factory acceptance
tests of the OCTL telescope showed that this aberration is negligibly small compared to other aberrations;
and (2) we deemed that a Hartmann mask containing only 20 holes would not provide adequate sampling
to reliably distinguish spherical aberration from defocus.

The x- and y-components of total wavefront slope error at the ith hole position are represented by

SX;

S 8J'($iayi)
S a;- Tt
j=1

- 0J; (x4, i)
SY; = ij . JT

where m is the number of terms used. We seek to choose coeflicients a; and b; in such a way as to
minimize



(1)

Frame number

39
40
41
42
43
44
45
46
47
48
49
50

Average
all frames

Standard
deviation

Standard of
the mean

Average
frames 39-44

Standard

deviation

Standard of
the mean

Average
frames 45-50

Standard
deviation

Standard of
the mean

Difference
frames (39-44)
— (45-50)

(2
Spot

0.313
0.283
0.258
0.307
0.281
0.301
0.274
0.341
0.307
0.263
0.377
0.399

0.309
0.044

0.013

0.291
0.020

0.009

0.327
0.055

0.025

—0.036

®3)

x-tilt

—0.128
—0.094
—-0.077
—0.059
—0.047
—0.118
—0.085
—0.089
—0.095
—0.079
—0.051
—0.075

—0.083
0.024

0.007

—0.087
0.032

0.014

—-0.079
0.016

0.007

—0.008

Table 1. Results for frames 39 through 50.

(4)

y-tilt

0.161
0.076
0.112
0.132
0.138
0.143
0.133
0.209
0.173
0.123
0.270
0.264

0.161
0.059

0.018

0.127
0.030

0.013

0.195
0.063

0.028

—0.068

(5)

Defocus

—0.012
0.016
—0.038
0.006
0.026
0.001
0.016
0.017
—0.024
—0.003
0.005
0.016

0.002
0.019

0.006

0.000
0.023

0.010

0.005
0.016

0.007

—0.005

(6)

X-astigmatism

0.039
0.056
0.065
0.056
0.035
0.045
0.047
0.095
0.057
0.066
0.111
0.155

0.069
0.035

0.011

0.049
0.011

0.005

0.089
0.040

0.018

—0.040

)

T-astigmatism

0.023
0.026
—0.011
0.026
0.025
0.029
0.033
0.041
0.025
0.031
0.029
0.041

0.026
0.013

0.004

0.020
0.015

0.007

0.033
0.006

0.003

—0.014

(8)

X-coma

—0.066
—-0.014
—0.050
—0.037
—0.052
—0.045
—0.043
—0.089
—0.065
—0.045
—0.142
—0.138

—0.065
0.039

0.012

—0.044
0.017

0.008

—0.087
0.044

0.208

0.043

9)

y-coma

0.079
0.065
0.064
0.056
0.042
0.073
0.052
0.050
0.063
0.051
0.023
0.051

0.056
0.015

0.004

0.063
0.013

0.006

0.048
0.013

0.006

0.015



(1)

Frame number

54
55
56
57
58
59
60
61
62
63
64

Average
all frames

Standard
deviation

Standard of
the mean

Average
frames 54-58

Standard

deviation

Standard of
the mean

Average
frames 59-64

Standard
deviation

Standard of
the mean

Difference
frames (54-58)
— (59-64)

Series 1
average

Series 2
average

Overall
average

(2)

Spot

0.343
0.416
0.354
0.364
0.336
0.355
0.289
0.277
0.298
0.279
0.354

0.333
0.043

0.014

0.363
0.032

0.061

0.309
0.036

0.016

0.054

0.309
0.333

0.321

®3)

x-tilt

—0.101
—0.181
—0.076
—0.155
—0.078
—0.101
—0.107
—0.076
—0.099
—0.055
—0.063

—0.099
0.038

0.012

—0.118
0.047

0.024

—0.084
0.022

0.010

—0.035

—0.083
—0.099

—0.091

Table 2. Results for frames 54 through 64.

(4) (5) (6)

y-tilt Defocus X-astigmatism
0.059 —0.020 0.143
0.178 0.003 0.227
0.174 0.035 0.051
0.198 —0.008 0.122
0.195 0.003 0.133
0.058 —0.051 0.141
0.148 0.009 0.106
0.094 0.006 0.100
0.078 —0.012 0.095
0.160 —0.010 0.080
0.227 0.048 0.093
0.143 0.000 0.117
0.060 0.026 0.046
0.019 0.008 0.014
0.161 0.003 0.135
0.058 0.020 0.063
0.029 0.010 0.031
0.127 —0.001 0.102
0.063 0.032 0.021
0.028 0.014 0.009
0.033 0.004 0.033

Comparison of Series 1 and Series 2

0.161 0.002 0.069
0.143 0.000 0.117
0.152 0.001 0.-93

(7

T-astigmatism

0.041
0.010
0.007
0.015
0.015
0.019
0.015
—0.004
0.007
0.019
0.001

0.013

0.012

0.004

0.018

0.014

0.007

0.010

0.009

0.004

0.008

0.026

0.013

0.020

(®)

X-coma

—0.049
—-0.072
—0.105
—0.083
—0.115
—0.049
—0.069
—0.037
—0.071
—0.067
—0.122

—0.076
0.028

0.009

—0.085
0.026

0.013

—0.069
0.029

0.013

—0.016

—0.065
—0.076

—0.071

)

y-coma

0.046
0.087
0.023
0.096
0.059
0.046
0.056
0.037
0.067
0.026
0.022

0.051
0.025

0.008

0.062
0.030

0.015

0.042
0.018

0.008

0.020

0.056
0.051

0.053



Table 3. First derivatives of low-order Zernike functions.

Function name x-derivative y-derivative
oJ
Piston s On _,
ox oy
x-tilt % =2 % =0
ox Jy
8]3 8J3
-tilt — =0 — =2
Y ox Jy
aJ. aJ.
Defocus —4:4-\/§-:p —4=4-\/§-y
ox dy
aJ: aJ.
X-astigmatism —5:2-\/6~y —5:4~\/6~x
ox Jy
0J, 0Js
T-astigmatism 26 _ —4 - \/E - x 26 _ 2. \/6 ‘Y
ox oy
X-coma %:12-\/§-x~y %:18~\/§-y2+6~\/§-x2—4~\/§
ox Jy
0J; 0J;
y-coma —8:18~\/§‘x2+6~\/§-y2—4~\/§ —8:12~\/§~1:~y
ox oy
Nobs
2 2
Xz = E (SXi — Vi)
1=1
Nops

Xo = > (SYi—W,,)°

=1

The standard least-squares solution [5] is then given in rms waves at 633 nm by the transformation

_ D
lax] = [M X5 ] - [QX;] - 2 Arrone
— B _1 . . . —D
[be] = [MYis] - QY] - 5 e

where D = 1 meter is the telescope aperture diameter. The measurement vectors QX and QY have the
components

Nobs
QXj: Z\I/X aJ xzayz)

Nops

QY—j _ Z \I/Y xwyz)

The matrix to be inverted is given by



aJk(xza yz) . aJ](xhyz)

[MXp5) = or ox

'MZ

@
Il
-

[MY},;] =

NZ: &]k ar:z,yz an(xi,yi)

Except for measuring errors, the x- and y-components of the slope error vectors are generally not linearly
independent. For this reason, the least-squares analysis given in the foregoing must be formulated and
solved separately for the x- and y-components, omitting, in each formulation, terms for which the Zernike
functional derivatives are identically zero. In the case of symmetrical aberrations, such as defocus, the
difference between the x- and y-solutions (which in principle should be identical) gives an estimate of the
accuracy of the solution. It should be noted that, whereas Zernike functions are (by design) orthonormal
by integration over the unit circle, they are not orthonormal on a finite set of points defined by a Hartmann
mask (in this case having 20 holes). Some cross talk between Zernike terms therefore may be expected.

VI. Results

The results of our Zernike wavefront aberration analysis are presented in Table 1 (for data Series 1) and
Table 2 (for data Series 2). Geometrical rms spot radii, expressed in arcseconds, are given in column 2.
Wavefront aberration coefficients (expressed in waves at 633 nm) for the seven Zernike aberrations con-
sidered in our analysis are summarized in columns 3 through 9 of the tables. The coefficients for defocus,
X- and T-astigmatism, and x- and y-coma also are plotted against frame number (essentially a function
of the time of observation) for convenient intercomparison in Figs. 4 and 5.

From Tables 1 and 2, it is apparent that there are small, but not insignificant, frame-to-frame differences
in the magnitudes of the aberrations reported. These variations can be attributed in part to random
measuring errors in our determination of spot centroids. However, the largest contributor to the observed
variation appears to be slowly varying atmospheric refraction that is not fully averaged out over the
duration of a 60-second exposure. The effects are visible in our data at two levels: (1) full-aperture
frame-to-frame image motion as measured by excursions of the frame centroid (the mean position of all
20 spots in a frame), as illustrated in Fig. 6, and (2) sub-aperture frame-to-frame spot motions relative
to the frame centroid. These movements are significantly larger than our estimated measuring errors.
Thus, it must be said that, although the use of time exposures greatly reduces the residual effects of
atmospheric turbulence, measurable image motions remain whose time scales are evidently longer than
60 seconds. Although having insufficient data for a conclusive explanation, we suspect slowly varying
local patterns of nonuniform atmospheric density (“dome seeing”) as the likely cause.

Mean aberration values and standard deviations are tabulated frame by frame in Tables 1 and 2. These
statistics are calculated in two ways. First, the mean and standard deviation of all the frames of a series
are given. Second, each series is considered in two halves. Thus, in Series 1, frames 39 through 44 are
considered as a group, while frames 45 through 50 are considered as a second group. From examination
of these results, it is evident that the mean values and standard deviations of these subsets are not
significantly different from each other or from each series as a whole; and indeed all four data subsets give
similar results. This finding suggests that the observed deviations are indeed sufficiently random that
averaging of the data sets for each aberration is in fact meaningful.

10
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Fig. 4. Depiction of Zernike wavefront aberration coefficients derived from frames 39
through 50 (Series 1). The vertical axis represents Zernike wavefront aberration coeffi-
cients in waves at 633 nm. Specific aberrations are identified in the legend. The value of

the defocus distance A used in the Hartmann computation for this data series was chosed

to minimize the average value of the Zernike defocus coefficient for the series. Since wave-
front tilt terms are of no importance in estimating image quality, they are omitted from the
diagram.

VII. Discussion

In almost every frame, the smallest aberration we measured (other than tilt and defocus) is
T-astigmatism, having mean values of 0.020, 0.033, 0.018, and 0.010 wave in the four half-sets of data,
and an overall mean of 0.020 wave. The average standard deviation among the 22 individual frames is
0.0125 wave. Such apparently well-behaved statistics suggest that a meaningful standard deviation of
the mean might be given by dividing 0.0125 wave by +/(Nops — 1), yielding a formal probable error of
0.003 wave. While this is perhaps overly optimistic, it is apparent that the precision of order 0.01 wave
found in comparisons among individual frames is commensurate with our expectations based on analysis
of computer-simulated Hartmann test data, and in fact considerably better than the consistency achieved
in factory acceptance tests of the OCTL telescope using interferometry.

In almost every frame, the largest aberration we measured is X-astigmatism, having mean values of
0.049, 0.089, 0.135, and 0.102 wave in the four half-sets of data, and an overall mean of 0.093 wave.
The average standard deviation among the 22 individual frames is 0.047 wave, about half the mean
value. From Figs. 4 and 5, it is apparent that X-astigmatism is the least well-behaved of the measured
aberrations.

From examination of Figs. 4 and 5, it is evident that the five aberrations shown, despite signifi-

cant frame-to-frame variations, tend to maintain their relative magnitudes (and signs) for the entire set
of measurements. Thus, defocus and T-astigmatism remain close to zero, X-astigmatism holds the lead at
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Fig. 5. Continuation of Fig. 4, depicting the Zernike wavefront aberrations derived from
frames 54 through 64 (Series 2). The meanings of symbols used are the same as in Fig. 4.
As with Series 1, the value of A used for Series 2 was chosen to reduce the average Zernike
defocus coefficient to a small value.

close to +0.1 wave, while y-coma remains at about +0.05 wave and x-coma almost matches X-astigmatism
but in the opposite sign, in the range from —0.05 to —0.1 wave. The results altogether indicate that
the overall rss wavefront aberration of the OCTL telescope (ignoring tilt and defocus but considering
astigmatism and coma) is around 0.130 wave, or about 2.6 times larger than specified as a performance
requirement for the telescope system.

Our results indicate the presence of discernible levels of coma, which could in principle be corrected
by a small lateral adjustment of the secondary mirror centration (shifting it by about two thousandths
of an inch, or 50 pm, in an appropriate direction). Such an adjustment was not performed because the
coma is very small and easily correctable by adaptive optics.

A possible source of systematic error that might introduce spurious aberrations in our test results
would arise from errors in the locations of holes in the Hartmann mask. Mask metrology, mentioned
earlier (Section II), shows the presence of differential mask shrinkage of about 0.26 percent in the
y-direction relative to the x-direction. Our analysis indicates that this could produce, at most, a spurious
indication of astigmatism of about 0.007 wave at 633 nm (of undetermined orientation) in the test results
reported in this article. Our conclusions are not affected by a possible system error of this magnitude.

The levels of astigmatism and coma reported here are somewhat greater than the levels indicated by
acceptance tests performed interferometrically at the factory prior to delivery of the OCTL telescope
to Table Mountain. A number of factors might account for this difference, among them (1) the fact
that, because of mechanical interference with the test facility at the factory, the acquisition telescope (its
weight a source of secondary mirror misalignment) was not attached to the main telescope during vertical
line-of-sight tests at the factory; (2) in factory tests, the telescope was fully shrouded against air currents,
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Fig. 6. Observed motion of the spot pattern center of gravity
between successive 1-minute exposures in the data of Series 2.
The coordinates are in arcsecond units. The overall rms radius of
the random walk pattern is 0.42 arcsecond. These motions were
removed from the data prior to solving for Zernike wavefront
coefficients. Such full-aperture motions would show up as image
blur in a long exposure, unless corrected by the tip/tilt element in
an adaptive optic system.

whereas it is exposed to “dome seeing” at Table Mountain, as already noted; and (3) following initial
delivery, the primary mirror in its cell was removed from the telescope and returned to the factory for
rework prior to re-installation and realignment (without benefit of optimal tests for coma) for the tests
reported here.
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